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The evolution of an internal gravity wave is investigated by direct numerical com- 
putations. We consider the case of a standing wave confined in a bounded (square) 
domain, a case which can be directly compared with laboratory experiments. A 
pseudo-spectral method with symmetries is used. We are interested in the inertial 
dynamics occurring in the limit of large Reynolds numbers, so a fairly high spatial res- 
olution is used (1292 or 2572), but the computations are limited to a two-dimensional 
vertical plane. 

We observe that breaking eventually occurs, whatever the wave amplitude: the 
energy begins to decrease after a given time because of irreversible transfers of energy 
towards the dissipative scales. The life time of the coherent wave, before energy 
dissipation, is found to be proportional to the inverse of the amplitude squared, 
and we explain this law by a simple theoretical model. The wave breaking itself 
is preceded by a slow transfer of energy to secondary waves by a mechanism of 
resonant interactions, and we compare the results with the classical theory of this 
phenomenon: good agreement is obtained for moderate amplitudes. The nature of 
the events leading to wave breaking depends on the wave frequency (i.e. on the 
direction of the wave vector); most of the analysis is restricted to the case of fairly 
high frequencies. 

The maximum growth rate of the inviscid wave instability occurs in the limit of 
high wavenumbers. We observe that a well-organized secondary plane wave packet is 
excited. Its frequency is half the frequency of the primary wave, corresponding to an 
excitation by a parametric instability. The mechanism of selection of this remarkable 
structure, in the limit of small viscosities, is discussed. Once this secondary wave 
packet has reached a high amplitude, density overturning occurs, as well as unstable 
shear layers, leading to a rapid transfer of energy towards dissipative scales. Therefore 
the condition of strong wave steepness leading to wave breaking is locally attained by 
the development of a single small-scale parametric instability, rather than a cascade 
of wave interactions. This fact may be important for modelling the dynamics of an 
internal wave field. 

1. Introduction 
We here characterize wave breaking of an initially smooth wave field as the 

occurrence of energy dissipation in the limit of small viscosity, due to energy transfers 
towards dissipative scales. In the case of internal gravity waves, breaking also results 
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in irreversible vertical mixing of matter. This is therefore an important mechanism of 
vertical heat transfer and chemical transport in stably stratified media like the oceans 
or the atmosphere (e.g. Muller et al. 1986). 

Breaking of interfacial gravity waves is observed when the amplitude becomes so 
large that local overturning occurs. The heavy fluid is then over lighter fluid, and 
a mechanism of Rayleigh-Taylor (convective) instability quickly leads to the loss of 
regularity and turbulence. Such a convective instability also occurs in the case of 
internal waves in a continuously stratified fluid, but a mechanism of shear instability 
can also lead to loss of regularity for similar wave amplitudes. Both mechanisms are 
encountered in the ocean: examples are given by Kunze, Williams & Briscoe (1990) 
for the former and by Orlanski & Bryan (1969) for the latter. Evidence of these two 
kinds of instabilities is also provided by laboratory experiments (e.g. Thorpe 1968; 
McEwan 1971; Orlanski 1972; Taylor 1992). 

The occurrence of breaking is not limited to internal waves with very steep initial 
isodensity lines. For internal gravity waves of moderate amplitude, the breaking event 
itself is preceded by a slower phase of wave steepening. For instance, a propagating 
wave in a mean sheared medium progressively steepens and breaks near critical 
layers, where the propagating velocity with respect to the medium vanishes (e.g. 
Winters & D’Asaro 1989; Winters & Riley 1992). For standing waves considered 
here, this process cannot occur, but a mechanism of resonant interactions between 
different modes can transfer energy to smaller wavelengths. It results in a progressive 
increase of the local slope of the isodensity lines, eventually leading to breaking. Such 
standing waves correspond to the case of a confined domain, e.g. laboratory tanks. 
A periodic primary wave is then forced by a paddle (McEwan 1971; Orlanski 1972) 
or by parametric instability (McEwan & Robinson 1975; Thorpe 1994c; Benielli & 
Sommeria 1994). Breaking is indeed commonly observed in such experiments. In 
some other experimental conditions, with lower forcing amplitude, the secondary 
wave is stabilized by viscous effects, so that the nonlinear transfers between a limited 
set of modes can be studied in isolation, and found in good agreement with weakly 
nonlinear expansions (McEwan, Mander & Smith 1972). However, the succession 
of events leading to the wave breaking itself are difficult to analyse precisely in 
laboratory experiments. 

Therefore direct numerical simulations can be very useful to analyse these mecha- 
nisms and compare them with theoretical models. During the initial stage (i.e. before 
wave breaking), Orlanski & Ross (1973) found a very good agreement between ex- 
periments, numerical results and analytic solution (up to second order in amplitude). 
After the onset of wave breaking however, comparisons with experiments show some 
differences, though a good qualitative agreement is obtained in particle trajectories. 
In fact these differences are the results of both a low resolution (32 grid points in the 
horizontal direction, 120 in the vertical direction) and the limited accuracy of the finite 
differences method. These results are also very sensitive to subgrid-scale modelling. 
Consequently, the turbulent regime was poorly described numerically, as underlined 
by Orlanski (1972). Subsequently, extensive two-dimensional numerical simulations 
were performed by Orlanski & Cerasoli (1980) (with a resolution of 51 x 61). The 
existence of a possible statistically stationary state through wave-wave interactions 
was addressed, and the energy transfers in the presence of a background random 
wave field were studied. 

The mechanisms of wave breaking itself were not analysed in these previous 
numerical studies. This is the aim of the present paper: we start with a simple 
standing wave and study the succession of instabilities that lead to wave breaking. 



Breaking of standing internal gravity waves through two-dimensional instabilities 267 

Progress in computer technology, and the use of a precise pseudo-spectral method, 
allow much higher resolution than in previous works. The spatial organization of 
the growing perturbation leading to wave breaking can be clearly analysed, without 
significant smoothing by viscous effects. Furthermore, the theoretical interpretation 
of the initial instability in terms of resonant wave interactions is only possible 
for small wave amplitude, but breaking then occurs after many periods of the 
primary wave. Therefore it is also necessary to have a long time of integration, 
and three-dimensional computations with appropriate spatial resolution would be 
prohibitively long. We have thus chosen to restrict the problem to two-dimensional 
calculations in the vertical plane. Actual wave breaking clearly involves three- 
dimensional mechanisms, corresponding to a local convective instability in regions of 
overturned isodensity lines (e.g. Thorpe 1994b). However, the time of breaking and 
rate of energy loss for the primary wave must be controlled by the slowest mechanism 
in the succession of instabilities. In the case of an initial wave of moderate amplitude, 
the slowest process is the primary instability by resonant interaction, which can be 
two-dimensional with appropriate choice of experimental conditions (as for instance 
in McEwan 1983). Comparisons with laboratory experiments (see 0 4) indicate 
that our two-dimensional model indeed captures much of the dynamics of a real 
system. Furthermore, turbulent regimes with buoyancy forces can be surprisingly well 
approached by a two-dimensional computation, as shown in the case of Rayleigh- 
Bhnard convection (DeLuca et al. 1990; Christie & Domaradzki 1992; Bartoloni 
et al. 1993). Indeed energy transfers towards small scales are not forbidden by the 
local vorticity conservation, unlike in two-dimensional unstratified turbulence (e.g. 
Kraichnan & Montgomery 1980). 

We briefly present the numerical model in the next section. In 0 3, the initial regime 
is described: a standing internal wave with finite amplitude. The loss of coherence 
and subsequent breaking of this wave is described in 5 4. In 6 5, the first wave 
instability is interpreted in the framework of the theory of resonant interactions. In 
0 6, a predictive model for the breaking of high-frequency standing waves, using the 
idea of local parametric instability, is compared to the numerical results. 

2. Numerical model 
We solve the two-dimensional Navier-Stokes equations in the Boussinesq approxi- 

mation, using a pseudo-spectral method (Canuto et al. 1988): the spatial derivatives 
are computed in Fourier space while the nonlinear terms are computed in physical 
space. The domain is a square in a vertical plane; in order to model the boundary 
conditions of laboratory experiments, normal velocities at the walls are set to zero. 
This is compatible with a pseudo-spectral method if symmetry boundary conditions 
are introduced. The normal velocity component is an odd function of the normal 
coordinate at each boundary, so that it vanishes there. The symmetries of the equa- 
tions imply that the tangential velocity component is an even function of the normal 
coordinate (therefore its normal derivative vanishes: this is a free slip condition). 
The (reduced) density fluctuations p’ have the same parity as the vertical velocity 
component. These symmetry properties allow the use of Fourier transforms, involving 
only sines or cosines, to compute spatial derivatives (e.g. Brachet et al. 1988). The 
computation of the nonlinear terms in physical space generates aliasing errors which 
are eliminated by a standard truncation method. Integration in time is performed 
using an explicit third-order Adams-Bashforth scheme and the diffusion terms are 
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calculated explicitly (Canuto et al. 1988, p. 204). Resolution is 1292, with a few test 
runs at 2572. 

We use Cartesian coordinates (x, y), with vertical coordinate y directed upwards. 
A vertically displaced fluid particle oscillates with the buoyancy (Brunt-Vaisala) 
frequency N, defined by 

where g is the acceleration due to gravity, PO is the density of a hydrostatic reference 
state and p(y) is the mean density profile. We assume that N is constant, so that p is 
linearly decreasing with the vertical coordinate y and does not vary with time. In the 
Boussinesq approximation, this basic density profile plus the superimposed density 
fluctuations p*, stay close to the mean density PO: p(y) + p*(x, y,t) m PO at any time. 
The condition of incompressibility is assumed, and taken into account by introducing 
a stream function y,  related to the two velocity components u, and uy by 

ux = aYw, uy = --a,y. 

We solve the Boussinesq equations in terms of the vorticity - A y  and the reduced 
density fluctuations p' = (g/po)p' : 

(2.1) 
n+l n+l 

a t 4  + J(4, y )  = axP'+ v(-1) A y,  

where the nonlinear advective terms are written by means of the Jacobian J ,  and the 
Prandtl number P r  is taken equal to unity unless otherwise specified. The numerical 
computations are performed in a square of length n on each side, with a Brunt-Vaisala 
frequency N = 1, and time will be scaled by the Brunt-Vaisala period TBv = 2n/N. 
Any corresponding physical situation can be represented by these calculations with 
appropriate choices of length and time units. 

Dissipation is modelled either by an ordinary diffusion, using a Laplacian term 
(n = 1) or by a bilaplacian (n = 2), which better restricts the dissipation to the highest 
wave vectors. Before each run, viscosity is adjusted to get its minimum possible 
value for a given spatial resolution. If viscosity, or the density diffusion coefficient, 
is too low, spurious noise accumulates at the smallest resolved scales. We check that 
the smallest spatial scales are well resolved by computing the different terms of the 
evolution equation for the total energy, E = J J(pl2/N2 - ydy)  dx dy : 

KEdm PEdiss 

where KEdis, and PEdiss denote the dissipation of kinetic and potential energy, and 
( )  refers to a spatial average over the numerical domain. We discard the equation 
results, and increase the viscosity, if (2.3) is not verified within a precision of at least 
1%. The numerical parameters chosen for different initial conditions are indicated in 
tables 1 and 2. 

In the specific case of a low-frequency mode, the flow has a much smaller scale 
along the vertical than along the horizontal direction, and it was useful to increase 
the vertical resolution in comparison with the horizontal one. For that purpose, we 
still use a square domain with a square numerical mesh, but in terms of a dilated 
vertical coordinate. We are then led to make corresponding changes in time scale and 
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Run Mode Range of amplitude, a dt Resolution 

11 (53) [0.024, 0.0561 4 x 10-3 129’ 
12 (1J) [0.08, 0.41 4 x 10-3 129’ 
13 ( 1 3  [0.004, 0.0161 4 x 10-3 1292 

TABLE 1. Initial conditions and numerical parameters: case of an inviscid fluid. The time steps are 
indicated in BV periods, the amplitude is dimensionless. In the case of a low-frequency mode, the 
vertical scale is expanded by a factor of 5. 

Run Mode Amplitude: a Dissipation dt Resolution 

V1 (5,l) 0.072 ~ 2 , ~  = 4 x 10-7 3 x 10-3 129‘ 
V2 (5,l) 0.02188 ~ 2 , ~  = 4 x 10-8 3 x 10-3 129’ 
v3 (591) 0.012 ~ 2 , v  = 4 x 10-9 3 x 10-3 1292 
V4 (5,l) 0.008 ~ 2 , v  = 4 x 10-9 3 x 10-3 1292 

V6 (1,l) 0.4 ~ 2 , v  = 4 x 10-7 4 x 10-3 129’ 
V7 (1,l) 0.4 A’,v = 8 x lov7 8 x low3 65’ 
V8 (1,l) 0.328 ~ 2 , v  = 4 x 10-5 4 x 10-3 129’ 
V9 (1,l) 0.256 A , V  = 3 x 2.10-5 4 x 10-3 1 292 
V10 (1,l) 0.256 ~ 2 , v  = 4 x 10-7 4 x 10-3 1292 
V11 (1,l) 0.192 ~ 2 , v  = 4 x 10-8 4 x 10-3 1292 
V12 (1,l) 0.128 ~ 2 , v  = 2 x 10-8 4 x 10-3 1 292 
V13 (1,l) 0.064 ~ 2 , v  = 4 x 10-9 4 x 10-3 1292 

v5 (1J) 0.4 ~ 2 , v  = 2 x 10-7 2 x 10-3 2572 

V14 (1,5) 0.032 ~ 2 , v  = 2 x 10-5 2 x 10-3 2572 
V15 (1,5) 0.016 ~ 2 , v  = 2 x 10-6 2 x 10-3 2572 

TABLE 2. Initial conditions and numerical parameters: case of a viscous fluid. The time steps are 
indicated in BV periods, the amplitude and dissipation are dimensionless. 

dynamical functions according to the following relationships : 

R = k , ~ ,  9 = k,y, 7 = t cos 0, ijj = (k,k,/ cos 0)w, ?, = p’k,, (2.4) 

where the dilation coefficients k, and k, are the horizontal and vertical components of 
the initial mode wave vector, and tan0 = k,/k,. We numerically solve the equations 
obtained by making these changes of variables in all the terms of (2.1) and (2.2), 
except the diffusive ones: we still keep the same form of the diffusive terms with the 
new variables. This procedure is equivalent to increasing the numerical resolution 
only in the vertical direction, and reducing the vertical diffusive term accordingly. 
The introduction of such an anisotropic diffusion should not have a significant effect 
because the dynamics is controlled by inertial effects, and it allows better resolution 
of the strong gradients which are mostly in the vertical direction. 

3. The standing internal gravity wave 
The aim of this study is to observe the evolution of a simple standing wave, 

until breaking occurs. It is therefore natural to choose an initial condition with an 
unperturbed density field, and the velocity field of a linear standing wave (normal 
mode), with stream function y and density p’: 

y(x,  Y )  = a sin(k, x) W k ,  Y ) ,  P Y X ,  Y )  = 0, (3.1) 
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(b) (4 (4 

FIGURE 1. Different initial conditions, given by equation (3.1), for a standing wave. (a) total density 
field, (b-d) vorticity field (similar to the streamfunction), (b) k = ( 5 ,  l), ( c )  k = (1, l), ( d )  k = (1,5). 

represented in figure 1 for different choices of k,, k,. This velocity field will displace 
the isodensity lines (figure 2a), and the buoyancy restoring force will then reverse the 
velocity field, leading to periodic oscillations. The linear solution for this standing 
wave is 

y(x, y ,  t) 

P ' b ,  Y ,  t )  

= a sin& x) sin@, y )  cos(ot), 

= --a -&- cos(k, x) sin@, y )  sin(ot). 
k, N 2  

The frequency o is given by the linear dispersion relationship 

0 = N lcOso= N ~k , /k l  (3.3) 

where 6 is the angle of the wavenumber vector with the horizontal direction (the 
frequency can also be defined as negative, with the same modulus); k is the modulus 
of the wavenumber vector. This standing wave can be seen as the superposition of 
four pairs of plane waves with frequencies +o and -0, and wavenumber vectors 
(k~,k , ) , ( -kx ,k , ) , (kx ,  -ky),(-kx, -ky).  For simplicity, we will refer to this solution as the 
mode k = (k,,k,), and remember that the mode structure is unchanged by reversing 
any of the wavenumber vector components, and its oscillation is unchanged by 
reversing the frequency. 

While a single plane wave is an exact solution of the nonlinear equations (2.1) and 
(2.2) (in an unbounded domain), the standing wave (3.2) is only a solution of the 
linearized equations (the Jacobian vanishes in the hydrodynamic equation (2.1) but 
not in the density equation (2.2)). Therefore, the evolution of the initial condition (3.1) 
involves nonlinear interactions, and the actual solution will progressively depart from 
the linear approximation. The importance of the nonlinear effects may be estimated 
by the Froude number (see 0 5.2) 

TT 
U 

Fr = - 
N1' 

where U is a typical velocity and 1 a typical length. If we choose 1 = l / k  and the 
typical velocity U = ka, the Froude number is defined as 

Fr = k 2 a / N .  

In other words, the influence of nonlinear effects is estimated by comparing the typical 
wave vorticity to the Brunt-Vaisala frequency N (but N = 1 with our time unit). 
Another measure of the importance of nonlinear effects is the maximum slope h of 
the isodensity lines. The local slope is -drp*/(dyp' + dp/dy). For a wave of low 
amplitude, dyp* is neglectable and the slope reduces to dxp ' /N2 ,  and its maximum 
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RGURE 2. Total density fields after (a) one quarter, (b )  half, (c) three quarters of the wave period 
(initial condition (3.1) with k = (1,l) and a = 0.256, run V9). 

value in the linear approximation (3.2) is 

kza 
h = - = Frcos8. 

This characterization of the nonlinear effects differs from the previous one in the 
angular dependency. The influence of 8 on the nonlinear effects cannot be estimated 
by mere dimensional arguments, but it requires a complete theory. 

We shall see that whatever the wave amplitude, the coherence will be progressively 
lost and wave breaking eventually occur (but this will require more time as the 
amplitude is lower). However there also exists a branch of particular solutions which 
remain a periodic wave: this is the continuation of a linear standing wave as the 
amplitude is increased. Its structure can be obtained by an expansion in the amplitude 
a (Thorpe 1968): 

w 

k‘ky’ 
128 

y(x, y, t) = a sin(k, x) sin(k, y) cos(o’t) + a3- sin(k,x) 

sin( 3k,y ) cos( o’t) sin(3kYy) cos(3o’t) sin(k,y) cos(3o’t) ] Y (3.44 
N2 

+ - 
N2 - 0 2  10N2 - 902  
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k k2ky 
0‘ 8 

p(x, y, t) = --aN2L cos(k, x) sin(ky y) sin(o’t) - u2- sin(2kyy)( 1 - cos(2o’t)) 

sin(3kyy) sin(3m’t) 
3(k: + 9k;) 
10N2 - 902 

kky2 
128 

+a3N- cos(k,x) sin(kyy) sin(m’t) + 

1 k: + 9ky” 3k2 
N2 - 0 2  N2 

- sin(3kYy) sin(o’t) - - sin(k,y) sin(3o’t) (3.4b) 

(notations have been translated from Thorpe 1968, and a misprint in his expression 
for p has been corrected). 

Thorpe has also calculated the variation of the frequency o’ with the amplitude 
and obtained the following expression, up to fourth order (Thorpe, private commu- 
nication) : 

(3.5) 
k, kY a2 + kx4ky4(3k; + 37k;k; + 67k;) 

m ’ = o  1-- ( 32w2 642 k,4(k2 + lOk;)m4 

(the same relation has been also obtained by Sekerzh-Zen’covich (1983)’ up to second 
order, from the Boussinesq equations in Lagrangian coordinates). 

Our initial condition (3.1) fits with the expansion of Thorpe at t = 0 up to second 
order, so we expect to obtain a nearly periodic oscillation with frequency close to 
(3.5). The contribution of the primary wave (3.1) in the Fourier decomposition 
is indeed periodic to within an excellent approximation (figure 3a). The period is 
measured as the time interval between two successive zeros of this main Fourier 
component, and this is quite constant (within in relative variation) during the 
few first oscillations (after this initial regime, the breaking process develops, and the 
calculation diverges in the absence of viscosity). While the main Fourier component 
is periodic, harmonics are excited with a complex behaviour, for instance the mode 
(1,3) represented in figure 3(b). These harmonics can be made periodic by adjusting 
their initial amplitude (figure 3c), as discussed in 0 5.2. The initial condition is then the 
expansion for the nonlinear periodic wave (3.4) at t = 0 instead of the pure primary 
wave (3.1). 

The relative difference between the measured period and the linear period (3.3) is 
plotted versus the square of the wave amplitude in figure 3(d-f). This difference is 
close to the linear law predicted by the term of order a2 in (3.5) (dashed straight line). 
Some discrepancy appears at the highest amplitudes, especially for the mode (5,1), 
and the agreement is improved by taking into account the term in a4 in (3.5) (dashed 
curve). However the numerical result is between these two curves, suggesting that the 
series (3.5) is oscillating with fairly slow convergence. This remaining difference is 
however very small (- lop4 in relative value) and is close to the limit of the numerical 
precision. The difference would be better measured at higher wave amplitudes, but 
breaking then occurs during the first period of motion. Therefore the fourth-order 
expansion (3.5) already gives an excellent prediction of the primary wave period for 
practical purposes. This is true even when we choose the initial condition (3.1)’ instead 
of the nonlinear wave (3.4). 

4. Loss of coherence and breaking of the standing wave 
A remarkably organized perturbation progressively develops upon the standing 

wave, and its structure is best represented by the vorticity field (figure 4). It is a 
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FIGURE 5. For caption see facing page. 
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(figure 8c). This difference of behaviour can be related to the linear stability diagrams 
of the primary wave, as analysed in the next section. 

5. The growth of subharmonic instabilities 
5.1. The general Floquet analysis 

The progressive departure from a purely periodic oscillation can be considered as an 
instability of the ideal nonlinear periodic standing wave. The small initial difference 
with this ideal wave is progressively amplified. A complete treatment of this problem 
would first require the determination of the ideal periodic wave with finite amplitude, 
whose fourth-order expansion is given by (3.4). Then, using such an ideal periodic 
wave as a basic state, the eigen modes and growth rates of the linear stability problem 
should be determined. Since the basic flow is periodic in time, the perturbation 
can be expanded on the basis of Floquet modes. Such a general analysis has been 
performed, using numerical methods, in the case of a plane travelling wave (Mied 
1976; Drazin 1977; Klostermeyer 1982, 1983, 1990, 1991), but the extension to the 
present problem of standing waves remains to be done. However, the problem can 
be treated in the case of two important limiting cases. When the amplitude of the 
primary wave is small, the dynamics is controlled by resonant interactions and can 
be analysed by a low-order expansion in Froude number (8 5.2). The instability 
of the pure standing wave then appears as a particular case of the more general 
theory of resonant interactions (which can be applied for any initial field of low 
amplitude). The other limiting case is the local parametric instability, when the 
perturbation is at small scale in comparison with the primary wave, as discussed 
in 9 6. 

5.2. The dynamics of weakly interacting waves 
The dynamics of a wave field with low amplitude can be approximated by an 
expansion in terms of the Froude number, taken as a small parameter. This ap- 
proach is quite general in wave theory and has been developed for surface waves 
by Phillips (1960, 1961), Hasselmann (1962a, b), and applied to progressive internal 
waves by Davis & Acrivos (1967). The calculations for standing internal gravity waves 
have been performed by Thorpe (1968), McEwan (1971) and McEwan et al. (1972). 
It is useful to briefly summarize these results here, before applying them to our 
computations. Since the interaction between waves is weak, each mode oscillates 
in first approximation with its frequency (3.3) given by the linear theory, but its 
phase and amplitude can slowly vary under the effects of wave interactions. The 
problem is formalized in terms of a multi-scale expansion (e.g. Bender & Orszag 
1978), introducing a rapid time to and a slow time t l ,  and each field formally depends 
on these two times. The wave oscillates as a function of the rapid time to, and the 

FIGURE 3. (a) Amplitude of the mode (1,l)  for an initial condition (given by equation (3.1)) with 
k = (1,l). (b) Amplitude in the mode (1,3) for the same computation. (c )  Amplitude in the mode 
(1,3) when the nonlinear wave (3.4) is introduced at t = 0 (times are indicated with the unit TBv). 
( d )  Relative deviation of the computed wave period with the linear period given by (3.3), versus the 
amplitude squared a2; the theoretical results (3.5) are indicated by the straight dashed line (up to 
o(a2)) and by the dashed curve (up to o(a4)); the stream function (3.4) is introduced at t = 0 with 
k = ( 5 , l )  (runs 11); (e) same as (d) but k = ( 1 , l )  (runs 12); (f) same as (d) but k = (1,5) (runs 13). 
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amplitude and phase of this oscillation depends on t l .  All time derivatives in (2.1) 
and (2.2) are then written as 

while the fields are expanded in Froude number 
8, = a,, + Fr a,, (5.1) 

(5.2) 

(at each next order in Froude number, a still slower time scale would have to be 
introduced). 

Introducing this form of solution in the Boussinesq equations (2.1) and (2.2), we 
get at zero order in Fr, the linearized wave equation: 

1 Y(t0, tl, ... ) = YO(t0, tl, ... ) + Fr Yl(t0, tl, ... ) + .*., 
p’(t0, t ~ ,  ...) = pb(t0, tl, ...) + Fr pi(t0, tl, ...) + ... 

(@,A + Pa:) yo = 0, a,, pb = -N2dx yo. (5.3) 

The general zero-order solution corresponding to our boundary conditions is a 
superposition of linear standing waves (3.2). However, their amplitudes ai and phases 
cti depend in general on the slow time scale tl: 

WO(X,Y, to, ti) = z a i ( t i )  sin(k,x) sin(k,,y) cos(mito + ai(tl)), I 

where the frequency mi is given by the dispersion relation (3.3). 
Introducing the zero-order solution in (2.1) and (2.2), we get the first order equations 

(5.5) (@ + N 2 a  Y1 = -2dtodt, &o - & , J ( 4 J o ,  Yo) - axJ(Pb, Yo), 

ato p; = -N2& y1 - J(pb, Yo) - &,Pb. (5.6) 
The quadratic nonlinear terms in the right-hand side of (5.5) are composed only of 

FIGURE 4. Development of the secondary instability in the form of a plane wave packet (initial 
condition (3.1) with k = (1,l) and a = 0.256, run V9): successive snap shots of the vorticity field 
(1st column) and the total density field (2nd column). For the vorticity fields, the contribution in 
the Fourier mode (1,l) has been removed in order to better visualize the perturbation itself (and 
the represented iso-values depend on the extrema, with solid lines for positive values and dashed 
lines for negative values). In the last column, the corresponding position of a pendulum (analogous 
to the secondary wave) is indicated for comparison: it is parametrically excited by the vertical 
oscillation around a fixed reference level (dashed line) of its support (the horizontal solid line), 
analogous to the primary wave. (a) t = 60.4 T~v(42.5 periods of the main wave have occurred since 
t = 0); (vorticity range [-0.20;0.36]). The deformation vanishes while the velocity (and vorticity) 
is extremal. The predicted inclination (6.2) of the perturbation wave crests 81 = 20.7” is indicated. 
(b )  t = 61.8 TBV, after one period T of the main wave, the phase of the secondary wave has 
been reversed (vorticity range: [-0.42;0.29]) ( c )  t = 62.1 Tsv, 1/4 period later, the pattern has 
been rocked by the main wave and reaches its minimum slope. (vorticity range:[-0.30;0.32]). The 
analogous pendulum rises with its support at the upper position (its rising motion then benefits from 
a lower apparent gravity). ( d )  t = 62.5 TBV, the secondary wave is close to extremal in deformation, 
and has weak vorticity so that the resonant triad (2,6) (3,7) is visible. (vorticity range [-0.24;0.27]) 
(e )  t = 62.8 Tsv, the structure has been rocked in the opposit direction, reaching its maximum 
slope (isovalues of the vorticity :[-0.29; 0.561). The analogous pendulum is going downward with 
its support at its lower position (its motion then benefits from the highest apparent gravity). (f) 
t = 63.2 T ~ v ,  the structure of (a) is recovered (with the development of a secondary perturbation) 
(vorticity range [-0.39; 0.541). 
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Fourier modes with wavenumber vectors obtained by sums and differences of the 
wavenumber vector components excited at zero order. This is the condition of spatial 
resonance for nonlinear interactions : 

ki + k2 + k3 = 0 (5.7) 

where k2 and k3 are any pair of wavenumber vectors defining the modes excited at 
zero order (any resonant relation with a minus signs can be transformed into such a 
sum relation by inverting the corresponding wavenumber vector components, which 
does not change the mode, as previously noted). Each of the quadratic terms in the 
right-hand side of (5 .5)  oscillates with frequencies which are sums and differences 
of the natural frequencies of the zero-order modes k2 and k3 in the triad. The 
amplitude of the first order perturbation, projected on the mode kl, thus behaves 
like an oscillator, excited at frequencies 0 2  & o3 by the right-hand terms. If this 
excitation is not resonant, i.e. if it does not involve the natural frequency 01  (given by 
(3 .3) )  of the oscillator, a permanent oscillation is obtained at the exciting frequency. 
The general solution for the first order perturbation, projected on the mode kl,  is 
a superposition of this permanent solution, and a transient solution at the natural 
frequency ol. In the absence of dissipation, this 'transient' solution persists in fact 
forever, and its amplitude is determined by the initial condition. Therefore the forced 
oscillation at frequencies 0 2  & 0 3  coexists with the natural frequency 0 1 ,  except for 
particular initial conditions. In this case of non-resonant interaction, the slow time 
scale is not needed: the nonlinear perturbation is controlled by the zero-order waves 
on a rapid time scale. 

However if the frequency of a right-hand nonlinear term corresponds to its natural 
frequency 01, the first-order perturbation is excited without bound. This is the 
condition of temporal resonance, which occurs in addition to the condition of spatial 
resonance (5.7) : 

(notice that each mode can be represented both by positive and negative frequencies, 
so this relation covers all possible sign combinations). The perturbation projected on 
mode kl then reaches the zero-order level, and the validity of the expansion would 
then break down, except if the term 2&0a,,dlyo introduced by the slow time scale 
exactly balances the nonlinear resonant term. This condition leads to an evolution 
equation for the zero-order amplitude a1 and phase a1: 

0 1 + 0 2 + 0 3 = 0  (5.8) 

kfu1 = 4243 S c q  cos(cp), kfa l tq  = -Swl a2 a3 sin(cp), (5.9) 

where cp = a3 + a1 + a2 , and S is the interaction coefficient, given by McEwan et al. 
(1972) (but there is a mistake by a factor of two in that paper) 

FIGURE 5. Snapshots showing the breaking of the wave of figure 4, by vorticity fields (1st column) and 
total density isovalues (2nd column). (a) t = 69.5 7's" (49 periods of the main wave have occurred 
since t = 0): the density is extremal and iso-lines first overhang, while vorticity perturbation is weak. 
(b)  t = 70.2 TsV:  vorticity is extremal and the strips are still weakly deformed. (c) t = 72.37'8": 
density perturbation is again extremal and overhangs more than in (a). (d)  t = 73.0 7's": the 
vorticity strips begin to break into chains of vortices. (e) t = 73.7 TB" : the secondary wave is now 
strongly disrupted. 
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FIGURE 6.  Laboratory experiments (from Benielli & Sommeria 1994). The displacement is visualized 
by bands of dye which are initially horizontal, made fluorescent by a vertical sheet of laser light. 
The tank has a square vertical cross-section (25 cm x 25 cm) and breadth 9 cm, and the developing 
primary wave has essentially a two-dimensional structure in the vertical plane. This primary wave is 
excited by the parametric instability due the vertical oscillation of the supporting plateform. We see 
here the development of the secondary instability (a) leading a few periods later to wave breaking 
(b) .  This mechanism is quite similar to the simulations shown in figures 4 and 5. However, note 
that during the later turbulent stage three-dimensional processes are involved : convective rolls are 
observed along the third dimension. 
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where r and s stand for any pair among the indices 1,2,3. The evolution equation 
for the modes 2 and 3 contains a similar term, obtained by circular permutation. In 
the case of a single resonant triad, a closed dynamical system is thus obtained. Its 
structure is best displayed in terms of the complex amplitudes Ai = ai exp(jwit + xi ) ,  
and their complex conjugate Af : 

k;& = A;A; Sol, kiA2 = A;A; SOZ, k$& = A;A; So3. (5.11) 

Since the interaction coefficient S scales like k4, the triad interaction depends on 
the vorticities of the interacting modes (and on the angular positions of their wave 
vectors). This is in agreement with the dimensional analysis of 9 3, stating that the 
nonlinear effects depend on the typical vorticity or Froude number. If some random 
noise is added to the pure standing wave, it will contain modes forming a resonant 
triad with the primary wave, and the interaction equation (5.11) can lead to an 
exponential amplification of these initially small perturbations. This is the classical 
mechanism of wave instability by resonant interactions, which is summarized in 0 5.3. 

However there is generally no significant random noise added to the numerical 
computation, and the initiation of such a resonant instability must be discussed. 
If the initial state is a pure mode of the form (3.1), the only spatially resonant 
triad is (kx ,  ky) , ( -kx,  k,),(O, -2k,). This triad also satisfies the condition (5.8) for a 
temporally resonant triad, but according to (5.11), the amplitude of the mode (0,2k,) 
is stationary, since its frequency is zero. The amplitude of the mode (0,2k,) is 
then given as a second-order perturbation: it is the solution of (5.6) which vanishes 
at t = 0 (since the initial density profile is unperturbed). This perturbation in 
density, given by (3.4) as the term in a2, is always associated with the standing 
wave, and has no associated velocity: it is in fact a perturbation of the vertical 
density profile. The same procedure can be applied at next order, and it gives 
an interaction equation (5.11) involving the amplitude of the primary wave and 
the density perturbation in the mode (0,2k,). For this particular triad, a constant 
derivative for the phase CI is obtained, and this is equivalent to the nonlinear correction 
in frequency (3.5). 

At this third order, there is also a non-resonant excitation of the mode (k , ,ky) ,  
obtained as the sum of (0,214,) and (kx ,  -k,), at frequency 3 0 ,  and of the mode (kx ,  3ky) 
(sum of (0, 2ky)  and (kx ,  k , ) )  at frequencies 3 0  and 0 (the amplitudes of these modes 
are given by (3.4) as the terms in a3). Such forced modes ,have frequencies which 
are always multiples of the primary frequency o, so that the resulting wave is purely 
periodic in time. However, the values of these harmonics at the initial time is imposed. 
Therefore, if the initial condition is not carefully adjusted, transient oscillations at 
the natural frequency of the mode (kx,3k,) must be superposed upon the primary 
wave, and the resulting evolution is not periodic, as seen on figure 3(b). Many other 
modes are excited during the first oscillations by non-resonant interactions at higher 
orders, and in general each of these modes oscillates at its natural frequency, in 
addition to the frequency of the nonlinear harmonic forcing. All the corresponding 
natural frequencies must then appear, except for a very specific adjustment of the 
initial condition, defining the nonlinear periodic wave. These oscillations can therefore 
initiate the instability of the primary wave by resonant interactions. 

5.3. Application to the instability of the standing wave 
The instability of a primary wave is described by (5.11), in which the complex 
amplitudes Al and A2 are supposed to be very small in comparison with the third 
amplitude, denoted A, corresponding to the primary wave. Therefore A is constant 
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(and assumed to be real by an appropriate definition of the phase) and A1 and A2 
are solutions of the linear system 

ktA1 = A;A'SO~,  kiA2 = A;A'  SO^. (5.12) 

The stability properties are obtained by diagonalizing this system. If w1 and w2 
have opposite sign, the eigen values are purely imaginary, and the perturbation does 
not grow. By contrast, if w1 and w2 have the same sign, we obtain a solution with 
exponential growth rate 

S 
s = 

klk2 
(5.13) 

such that A2 = a(kl/k2)(w2/w1)1/2A;; and also a decaying solution at rate -s, such 
that A2 = - a ( k l / k 2 ) ( 0 2 / ~ 1 ) l / ~ A ;  (a is the sign of S ) .  It is probable that one of the 
two modes 1 or 2 is dominantly excited by the non-resonant interactions during the 
first periods of motion (i.e. at tl = 0 but to # 0), so that the resulting mode amplitudes 
are the sum and difference of these two eigen modes: one amplitude grows like cosh 
(s t )  and the other one like sinh(st). 

The condition of instability that 0 1  and 0 2  have the same sign is equivalent to 
the statement that the primary wave can only feed secondary waves with smaller 
frequencies (in absolute values). Indeed, if for instance w is positive, the two sec- 
ondary frequencies must both be negative, in order to satisfy (5.8), so that the 
sum of their absolute values must be equal to w ,  and each of these absolute 
values is therefore smaller than w .  This remarkable condition results from quite 
general physical principles, as shown by Hasselmann (1967) and Davis & Acrivos 
(1967). 

The interacting triads can be represented by the extremity of the vector kl  in the 
plane, k2 being then determined by the condition of spatial resonance (5.7). The 
additional condition of temporal resonance defines lines on the plane, which are 
represented on figure 10 for three cases of the primary mode. The condition of 
quantization of the wave vectors due to the boundary conditions still restricts the 
possibilities for resonant triads : each wave-vector component must be an integer. 
Furthermore, since the initial perturbations at the origin of the instability are excited 
by non-resonant interactions at different orders, their constitutive modes must have 
wavenumber-vector components which are integer multiples of the primary wave 
components. This condition of quantization is more restrictive than the mere effect 
of the boundary conditions (except in the particular case of the primary mode (1,l)). 

The line defining the resonant triads in figure 10 only exceptionally reaches the 
points defined by the quantization. However the condition (5.8) of temporal resonance 
need not be exact, but only verified within a precision of order Fr, such that the triad 

FIGURE 7. (a )  Vorticity at the central point of the domain (initial condition (3.1) with R = (1,l) 
and a = 0.256, run V9). The contribution of the Fourier mode (1,l) of the primary wave has been 
removed in order to better analyse the perturbation itself. ( b )  Corresponding time spectrogram 
during the interval delimited by a rectangle in (a). A Fourier transform is calculated over a shifting 
analysing (Gaussian) window. The width of this window is 18.47's". Isovalues (6, 24dB) of the 
modulus of the transform are represented in the plane timefrequency (time is in TBv and frequency 
in Ti;). The method of reallocation of Auger & Flandrin (1994) has been used in order to improve 
the resolution in the time-frequency plane. The frequency half the primary wave (0.352 Ti;), and 
the linear frequencies of the secondary modes (2,6), 0.3167'& and (3,7), 0.3947';; are shown for 
comparison. 
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FIGURE 8. Decay of the total energy versus time (expressed in TBy periods) for a standing wave with 
initial condition (3.1) (a)  primary wave k = (5, l), a = 0.0219 (runV2) ( b )  primary wave k = (1, I), 
a = 0.40, three computations, with different resolutions 65*, 129*, 257' and different coefficients of 
biharmonic dissipation (runs V5-7 of table 2), give very similar results. ( c )  primary wave k = (1,5), 
a = 0.032 (runV14) 

remains in a coherent phase relationship during the process of instability growth. 
Therefore, the lines of figure 10 represent the centre of an instability band whose 
width increases in proportion to the primary wave amplitude. The width of these 
instability bands is obtained by McEwan & Plumb (1977) in the case of progressive 
waves, by analysing the influence of a small detuning on the resonant interactions. 
Along the asymptotic branches reaching high values of k ,  the problem is simplified, 
since the instability becomes a parametric instability, and the classical results for the 
Mathieu equation apply. In this case, the secondary waves can be excited when their 
frequency is in the range [ 0 / 2  - s,0/2 + s], which does indeed scale in Fr. Since 
the condition of temporal resonance involves angles of the wavenumber vector with 
respect to the horizontal, the width of the resonance bands increases in proportion 
to the wavenumber (for a given primary wave amplitude). Along the asymptotic 
branches reaching high values of k,  the quantization condition is no longer effective 
when the band width is greater than unity (corresponding to wavenumbers k scaling 
like Fr-l) .  
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t =  71.5 

t =  94.9 

t =  L21.0 

FIGURE 9. Snapshots showing the evolution of a standing wave (3.1) with low frequency leading 
to overhanging iso-density lines (mode k = (1,5) with a = 0.032, runV14). The vertical scale is 
magnified 5 times by means of the change of variables (2.4). (a) t = 71.5 TBV (range of vorticity: 
[-0.41;0.39]); (b )  t = 94.9 TBV (range of vorticity: [-0.88;0.77]); ( c )  t = 121.0 TBV (range of 
vorticity : [-0.87 ; OSO]) 

Along the lines defining temporal resonance, the theoretical growth rate is calculated 
by (5.13) and (5.10), and represented on figure 11 as a function of the angle 81 (figure 
lla,c,e). We check that the growth rate vanishes for 81 smaller than the angle 8 
of the primary mode, in agreement with the general condition of instability that 
each secondary frequency must be lower than the primary one. An alternative 
representation is in terms of the wave number kl (figure l l b ,d , f ) .  We observe 
an important qualitative difference between the high frequency modes (($1) and 
(1,l)) and the low-frequency mode (1 ,5):  in the latter case the branch C is more 
developed, and contains the modes with maximum growth rate, while for high- 
frequency primary waves, the maximum growth rate is obtained along an asymptotic 
branch (denoted A) with high wavenumbers (this property has been also obtained 
for progressive plane waves of finite amplitude by Mied 1976 and Klostermeyer 
1982). The presence of a fine-scale structure of instability, with the vorticity bands 
of figure 4, is related to this remarkable linear stability property. Therefore most of 
our study is devoted to the case of a high-frequency primary wave. The asymptotic 
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FIGURE 10. Diagram of the possible resonant triads involving a given primary wave. The triads, 
satisfying both (5.7) and (5.8), are represented by the extremity of the vector -kl in the (x,y)-plane, 
defining 3 portions of curve denoted A, B, C. The primary wavenumber vector k3 is represented by 
the dashed segment (a) k = (5 ,  l), (b)  k = (1, l), (c )  k = (1,5), 

frequency along branch A is just half the primary frequency, and the growth rate 
becomes 

k2a cos2 8 
32 

(tan81 - tan8)[1+ cos(fJ1 - O)] S =  (5.14) 

where cos 81 = cos8. In this limit of high wavenumber vector, the condition of 
quantization becomes irrelevant, as noted above, and we then understand why the 
instability always develops at high wavenumbers in the corresponding numerical 
computations (figure 4). In the presence of viscosity, the modes at high wavenumbers 
would be more strongly damped, resulting in a maximum growth rate at an optimum 
wavenumber (that increases as the viscosity gets smaller). This would select the scale 
of the perturbation that eventually dominates. 
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In the limiting case of very weak viscosities that we consider in the wave breaking 
problem, there is however a wide range of wavenumbers with nearly identical growth 
rates. In that case, the initial condition plays an important role in this selection, since 
the different modes are initiated with widely different amplitudes. In the linear phase 
of the instability, the amplitude of each mode i grows like 

Ai( t l )  = Ai(0)  exp(sitl). 

The initial amplitude Ai(0)  depends in a complex way on the initial condition, through 
the non-resonant interactions during the first periods of the wave. Each mode i is 
excited at some order n in the Froude number expansion, and its amplitude Ai(0) 
then scales like Fr". The order n depends on the details of the wave structure, but 
it is roughly proportional to the ratio k i / k  of the wavenumber over the primary 
wavenumber: indeed the wavenumber vector ki is reached by a sum of the primary 
wave vector components involving typically k i / k  terms. Therefore the resonant triad 
involving the lowest wavenumber ki will generally dominate the initial instability 
growth, if its growth rate is close to the asymptotic limit. When the typical vorticity of 
the secondary modes becomes of the same order as the vorticity of the primary wave, 
the interactions between the secondary modes become important. Tertiary modes can 
be excited by new triad interactions, and a very complex nonlinear behaviour could 
be expected. However, the numerical computations reveal that the excited secondary 
modes tend to organize into a coherent plane wave packet (figure 4), inside which 
the nonlinear interactions are strongly reduced. Such a structure is best described in 
terms of a local mechanism of instability, following the ideas of McEwan & Robinson 
(1975), to be discussed in 4 6. Yet the formalism of resonant interactions provides 
excellent predictions of the instability growth rate, as shown in the next section. 

5.4. Numerical test of the theory of resonant interactions 
We have performed systematic computations for the two high-frequency modes (5,l) 
and (1,l) with different amplitudes. The exploration of the low-frequency case (mode 
(1,5)) is still preliminary, and will be discussed separately at the end of the section. In 
order to test the theoretical predictions, we have computed the evolution of the total 
energy in each Fourier mode, and selected the modes that reach a given threshold 
during the instability growth (to stay in the wave regime before the breaking itself, we 
stop this procedure when the maximum absolute value of vorticity reaches the value 
1). Resonant triads are indeed detected among these most excited modes, represented 
in figure 12, and they belong to the branch with highest growth rate (denoted A on 
figure 10). For the primary wave (5, l), and the two secondary modes (10, 14) and 
(5, 13), the condition of resonance (5.7) is satisfied within 4% of the primary wave 
frequency and it is satisfied within 2% for the secondary modes (15, 23) and (10,22). 
For the primary mode (1, l), and the secondary modes (2, 6) and (3, 7), the condition 
of resonance is satisfied within a precision of 0.4%. These modes are indeed among 
the most excited ones, but modes of higher wavenumber on the instability branch A 
are also excited, as expected. We also notice the presence of many temporally non- 
resonant modes. These are entrained by the nonlinear interactions with the unstable 
modes and cooperate to form the organized bands shown in figure 4. 

Indeed all the secondary modes grow with the same rate, found to be in good 
agreement with the theory for the asymptotic branch A. The time evolution of the 
energy of a few selected modes is plotted on figure 13, with logarithmic ordinate, 
and the theoretical growth rate (5.14) is indicated for comparison. The initial energy 
(< comes only from the numerical noise, but rises to a larger value set by 
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FIGURE 12. Diagram of the most excited Fourier modes during the instability growth. The modes 
whose energy exceeds a threshold 1/100 and 1/1000 of the initial wave energy are indicated 
respectively by the two different symbols H, 0. The lines of the resonant interactions from figure 10 
are indicated for comparison (note that a symmetry through the k, axis has been used). (a) Primary 
wave (5,1), a = 0.0219 (run V2). (b)  Primary wave (l,l), a = 0.256 (run V9). (c )  Primary wave (1,5), 
a = 0.032 (run V14) 

the non-resonant interactions during the first period of oscillation (we have removed 
the first period from the curves to restrain their vertical scale). After a period of 
adjustment, the resonant component of the oscillation, at the mode natural frequency, 
dominates the non-resonant part, and the instability develops exponentially?. In fact 
the growth is strongly modulated by interactions with other growing modes, as clearly 

t This period of adjustment depends on the particular choice of the initial condition: the 
initial non-resonant excitation of these modes at their natural frequency is probably very weak 
in comparison with excitation of the same spatial mode at harmonic frequencies, and only the 
former can initiate the resonant interaction. The adjustment period is reduced when we initiate the 
calculation with a pure density perturbation instead of a pure velocity perturbation (2.4). 
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FIGURE 13. Growth of the primary wave instability, initial mode (1, 1) with a = 0.256 (run V9). 
(a)  Evolution of the energy in the primary mode. (b,c) Growth of the energy in the two secondary 
modes (2,6) and (3,7) forming an isolated resonant triad with (1,l). ( d )  Growth of the vorticity 
extremum. The slopes obtained from the theory of resonant interactions (5.14) are indicated. 

seen for the modes (2,6) and (3,7). In spite of such strong nonlinear interactions, 
which are also responsible for the phase locking that maintains the shape of the 
growing wave packet, it is remarkable that the growth rate is still well predicted by 
the theory. The measured growth rate is plotted versus the primary wave amplitude 
in figure 14. For the mode ( l , l ) ,  it increases linearly with amplitude a3, except for 
the highest Froude number 0.8. Since the resonant interaction theory is supposedly 
restricted to low Froude number, this agreement is unexpected. A similar behaviour 
is obtained for the mode (5 ,1 ) ,  the growth rate being slightly lower than the theory 
for moderate primary wave amplitudes. 

For the low-frequency primary wave (1,5), the situation is more complex, since 
modes belonging both to branch A and branch C are excited. According to the 
theory of resonant interactions at first order, the branch C contains the modes with 
maximum growth rate (see figures l l e  and l l f ) ,  but in a fairly narrow region, 
here forbidden by the condition of quantization. The resonant triad of branch C 
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RGURE 14. Numerical growth rate of the primary instability versus the amplitude of the primary 
wave, compared with the theory of resonant interaction (5.14) (dashed lines). (a) wave k = (5 , l )  
(runs V1-4). (b) wave k = (1,l) (runs V5-13) 

detected in figure 12(c) ((8,10),(7,5),(1,5)) is in another part of this branch, and 
transfers energy from the primary wave towards modes of higher frequencies. This 
is forbidden as a general result of the theory of resonant interactions at first order, 
but the growth of these modes of higher frequencies probably results from higher- 
order resonant interactions because the primary wave has a fairly high amplitude. 
Therefore the theory of resonant interactions accounts for the different behaviour of 
the low-frequency modes, but a thorough study of this latter case remains to be done. 

6. A model for wave breaking 
6.1. Local parametric instability due to the primary wave rocking motion 

When the most rapidly growing perturbations are at large wavenumbers, it makes 
sense to consider that the perturbation is a local plane wave which is distorted and 
transported by the primary wave motion. Such an analysis has been performed by 
McEwan & Robinson (1973, who have found that the rocking motion of the primary 
wave around the node in displacement can amplify the perturbation by a mechanism 
of parametric instability. A perturbing wave of the form 

p’ = R(t)cos(qxX + q y  Y )  (6.1) 

is considered in the rocking frame of reference (X, Y ) .  The natural frequency of this 
perturbing wave depends on the angle 6, of its wave vector ij with the horizontal; 
and this frequency is therefore modulated by the rocking motion, at the frequency of 
the primary wave. Such a modulation amplifies the perturbing wave when its natural 
frequency is close to half the frequency o of the primary wave. This is obtained when 
the mean angle (0,) satisfies 

(e,) = el, cos el = ; cos 6. (6.2) 
This mean angle is the actual angle of the perturbing wavenumber vector when the 
density perturbation of the primary wave vanishes, and the angle of the wave crests 
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with the horizontal is then the complementary of el. For instance, in the case of the 
primary mode (l,l), the predicted angle is 20.7", in good agreement with the mean 
angle of the vorticity strips in the numerical computation, as shown in figure 4(a). 

Amplification of the secondary wave occurs with a well-defined phase, in analogy 
with a pendulum suspended at a vertically oscillating point, as illustrated on fig- 
ure 4. The apparent gravity is modulated in the frame of reference attached to the 
suspension point. When the apparent gravity is higher than average, the pendulum 
goes downward (figure 4e), and when it is lower, the pendulum goes upward (fig- 
ure 4c), so that the oscillating part of the apparent gravity always brings energy to 
the pendulum. In the same way, the displaced fluid particles in the secondary wave 
come toward equilibrium when the slope of their motion is maximum, and go away 
from equilibrium when the slope is minimum, so this oscillating motion receives net 
energy from the tilting motion of the primary wave. Since the phase of this secondary 
perturbation does not depend on the position, it must be indeed a standing wave 
(6.1), instead of a progressive wave. In other words, it can be considered as the sum 
of two progressive plane waves moving in opposite directions. 

In the limit of small primary wave amplitude, and in the absence of diffusive 
effects, the perturbation R(t) satisfies a Mathieu equation (obtained from McEwan & 
Robinson 1975) : 

R + N~ cos2 8, [I - tan 8, aM c o s ( w t ) ] ~  = o (6.3) 
where aM is the angular amplitude of the rocking motion of the primary wave: aM is 
equal to the maximum slope h of the deformed isodensity lines, defined in 0 3. The 
resulting growth rate of the perturbation is then 

sq = iaMw tan = iFr N cos2 e tan el. (6.4) 
This is typically 3 times higher than the asymptotic result (5.14) for the resonant triads, 
which has been found to be in good agreement with the numerical computations. For 
instance : 
for the primary mode (l,l), S,TBV = 1.04Fr, instead of 0.308 Fr from (5.14); 
for the primary mode (5,1), S,TBI/ = 1.34Fr, instead of 0.492 Fr from (5.14). 
Therefore, while the observed structure of the growing perturbation is quite in agree- 
ment with this idea of local parametric instability, the actual instability mechanism is 
less efficient. 

This difference is not commented on by McEwan & Robinson (1975). We propose 
an interpretation based on the fact that the perturbation is a wave packet rather than 
an ideal plane wave. Therefore some energy must be radiated away from the central 
region of generation, towards regions where the wave coherence is destroyed by the 
combined advective and propagative effects. Since a plane wave does not fit the 
boundary conditions, unlike the standing waves (3.1), such a limitation is necessary. 

The energy radiation depends on the perturbation wavelength, and we need first 
to understand what determines this important quantity. The band structures for 
different primary wave amplitudes are represented on figure 15: their length is always 
of the same order as the horizontal half-wavelength .n/k of the primary wave, while 
the typical perturbation wavelength 1 is proportional to the amplitude of the primary 
wave. These results can be understood by the following arguments. We have first 
to consider that the local parametric instability excites perturbations with natural 
frequencies wq spreading within the instability tongue defined by 

_ _  s < w , < - + s .  
2 2 
w 0 
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FIGURE 15. Vorticity bands obtained for three different primary wave amplitudes: (a) a = 0.256 
(run V9), (b) a = 0.328 (run V8), (c) a = 0.4 (run V6), showing that the perturbation wavelength is 
roughly proportional to the primary wave amplitude (kl = 0.2Fr). 

This corresponds to a distribution of the angles 8, for the excited wave vectors, 
with mean value 81 and typical width 68, given by differentiating the dispersion 
relationship (3.3) 

N sin O1 68, = 2s 

for small primary wave amplitudes. If the growing perturbation results from the 
superposition of waves with this distribution of wave vectors, a wave packet remains 
coherent over a length 1 if its mean wavelength is 

4s 
N sin O1 

1 = 2168, = i - 

(indeed, the waves with angles in the range [81 - 68,/2,81 + 68,/2], in phase at the 
wave packet centre, are shifted by 1/4 after a length 1/2 such that interference is no 
longer constructive). This wavelength is proportional to the primary wave amplitude 
for a given length 1. 
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form s = (Fr/TBv)f(8), (f(8) = 0.308 for the mode (1, l)), so that 
The growth rate is well predicted by (5.14), instead of (6.4), and we write it in the 

In order to estimate the length 1, we need to consider a second condition for the 
perturbation coherence, associated with the transport by the primary wave. Indeed 
this advection tends to give any material line a sinusoidal shape, which can be 
assimilated as a straight line only in the central part. We expect the wave coherence 
to be lost at distances from the centre for which the shift with the central tangent 
straight line is of order I/2. Using the displacement due to a linear primary wave 
(3.1) (we expand it at third order as a function of the distance from the centre), this 
condition leads to 

kI  96 
( 1 4 3  = 

Fr C O S ~  8 7 - (23/4) C O S ~  8 + C O S ~  8’ 

Combining this expression with (6.6), we get 

f ( 8 )  2 ___- 
1 96 

(kl)’ = ~ 

c0s3 8 7 - (23/4) cos2 8 + c0s4 8 sin O1 n 

which indeed does not depend on the mode amplitude. For the mode (l,l),  cos2 8 = 
1/2, and this formula gives 1 - n/k of the same order as the half-wavelength. 
Then (6.6) yields the perturbation wavelength, kl = 0.2 Fr, in good agreement with 
numerical results. 

The radiation of energy follows the group velocity, which is normal to the wavenum- 
ber vector for an internal wave, therefore along the wave crests. The value of this 
group velocity is 

vg = N sin 8,/q 

where q is the modulus of the wave vector q of the wave packet (q = 271/I)), and the 
radiated energy flux is obtained by multiplying this velocity by the energy density. 
For a wave packet of length 1 along the crests and width d ,  the energy density is 
obtained by dividing the total perturbation energy E,  by the area Id. Since the energy 
flux is active over a typical width d on each side, the resulting rate of energy decay 
scales like 2vgE,/1. Combining this loss with the production rate of energy by the 
parametric instability, twice the growth rate (6.4), we find a corrected growth rate 

(6.7) 
sin81 I 

1 271 
[ cos2 8 tan el f(s)] 

8 712 
s = sq - N-- = FrN 

where I has been estimated by (6.6). This reduced growth rate is thus proportional 
to the primary wave amplitude, as observed, but the numerical value is still too high 
(s=0.13FrN,  i.e. sTBv =0.84Fr, for themode (1,l)). 

6.2. Life time of the primary wave and breaking mechanisms 
The occurrence of wave breaking itself is not easy to specify in practice. We can 
consider the time for maximum energy decay. We can alternatively check when 
the Froude number (i.e. the vorticity in our computations) somewhere exceeds a 
threshold value greater than 1, indicating that some turbulence is produced, as 
discussed below. However these different criteria are found to be in agreement within 
a few primary wave periods, and a remarkable scaling law is observed, whatever the 
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chosen definition: for a given structure of the initial condition, the life time before 
breaking increases in proportion to the inverse square of the amplitude, as shown in 
figure 16. This is surprising, since the growth rate of the instability is proportional to 
Fr, so that a crude guess would give an inverse life time with Fr-'. 

We now propose a justification of this law, using the stability considerations of the 
previous section, but it is first useful to discuss the process of breaking itself. The 
instability becomes progressively very strong, and grows in typically one primary wave 
period, when the vorticity reaches a value of order N. This instability, described by 
Floquet theory, can then be physically interpreted in term of two basic mechanisms: 
(i) a shear instability occurring when the velocity of the perturbation is maximal, 
(ii) a convective instability associated with the local overhanging of the isodensity 
lines, occurring instead when the displacement is maximum. Thus both velocity shear 
and density overturning are expected to enhance parametric instabilities when the 
secondary wave exceeds a threshold amplitude. We here assume that for these two 
mechanisms the threshold values are given by the following criteria. Shear instability 
is expected when the Richardson number is smaller than 1/4 (e.g. Drazin & Reid 
1981): Ri = N2/(a,U)2 < 1/4, while convective instability is expected when the 
vertical density gradient becomes locally positive: -N2 + dyp' > 0. The influence of 
diffusion is specified by Thorpe (1994a), for a simple model of the density profile: 
comparisons with our computations indicate that diffusion effects do not significantly 
alter this condition of static instability. In fact, and because of the horizontal shear 
produced by the primary wave, convective instability is here unlikely to occur since 
the dynamics are restricted to a vertical plane (Deardorff 1965). Instead the wave 
seems to break through a shear instability, leading rapidly to fine-scale structures. 
We thus find that wave breaking occurs when the maximum vorticity reaches 2N (as 
given by the stability criterion above). 

Therefore, the perturbation grows with vorticity amplitude 

r q  = lO(4) exp(sqt) 

until breaking occurs for cq - 2N. This is then obtained at a time t b  such that 

Sq tb  = log(2N/cO(q)) 

and it is natural to suppose that this time should scale like the inverse of the growth 
rate, with Fr-', with only a weak logarithmic dependency on the initial perturbation. 
However, the amplitude of this initial perturbation must exponentially decrease with 
the wavenumber q. Indeed, as discussed in Q 5.3, the wavenumber q is excited at 
typical order n - q / k  in the Froude number expansion, with a corresponding vorticity 
amplitude Fr"; its logarithm scales like -q/ log Fr-' : it is proportional to the wave 
number q. This fact is quite general and related to the analyticity of dynamical 
fields during the first oscillations (this is long before breaking); the spectrum of 
any analytical function must decay exponentially at large wavenumbers. Now the 
important point is that the wavenumber q of the growing perturbation scales like 
Fr-' by (6.6), so that 

where the coefficient c depends only on the primary wave structure, but not on its 
amplitude. The observed law in F r 2  is then explained, with a logarithmic correction, 
which would be difficult to check because of our limited range of wave amplitudes. 

We have checked that the life time is indeed sensitive to the initial perturbation, as 
expected from the previous arguments, but it is dominantly controlled by the primary 

tb = cFrP2 log(Fr-')TBV 
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wave amplitude. For instance, we have added a white noise of the form W . f ( x , y )  
on the vorticity field every 100 time steps (f is a random function with a uniform 
probability in the interval [-0.5,0.5]). When W is 0.8% of the maximum initial wave 
vorticity, the life time becomes 55 TBv instead of 75 TBV for the pure wave (with 
a = 0.256), and it reduces to 45 TBv when the vorticity perturbation W is 8Yo.t 
Initiating the calculation with a pure density perturbation of a linear wave, plus its 
first-order perturbation, instead of a pure velocity (3.1), leads also to a somewhat 
shorter life time of 55 T B V .  Nevertheless, a dependency of the life time as F r 2  is also 
obtained with this second class of initial condition (figure 16). 

7. Conclusion 
We conclude that the standing internal gravity wave eventually breaks, and this 

breaking is associated with energy dissipation, which becomes practically independent 
of viscosity for high Reynolds number (as shown in figure 8b): the breaking is con- 
trolled by inertial effects, although the eventual energy dissipation is due to viscosity 
and diffusion. This is analogous to the energy cascade in unstratified turbulence. 
Irreversible vertical transport of matter is also associated with breaking, and this has 
been studied by Bouruet-Aubertot (1994), as well as other statistical features of the 
decaying turbulent regime resulting from breaking. We have limited the present paper 
to the mechanisms of instability which lead to wave breaking, while the statistical 
aspects are reported by Bouruet-Aubertot et al. (1994). 

The strong instability leading to wave breaking is preceded by a slow instability 
by resonant wave interactions. In the absence of dissipative effects, such instabilities 
always develop, whatever the primary wave amplitude (the growth rate is proportional 
to Fr for small primary wave amplitudes). This fact has already been recognized by 
various authors, and checked in laboratory experiments. In particular, the importance 
of the parametric subharmonic instability was emphasized. However, the structure 
and properties of the growing instability could not be fully analysed in laboratory ex- 
periments, due to difficulties of flow characterization and limited control of the initial 
conditions. The present numerical computations, performed with much higher spatial 
resolution than earlier studies on this subject, give a clear picture of the mechanisms 
leading to wave breaking. These computations provide good tests and illustrations 
of old theoretical conjectures, but they also reveal a remarkable organization of the 
unstable modes associated with nonlinear effects. 

The initiation of wave breaking can be considered as a problem of instability of an 
ideal periodic standing wave of finite amplitude, approached using (3.4). If the spatial 
structure of such a nonlinear wave is not exactly realized in the initial condition 
(for instance with the linear wave approximation (3.1)), the small difference will be 
amplified by an instability process. For the case of standing waves, the linear stability 

t Then a slight increase of the instability growth rate by 6% is observed in addition to the effect 
on the initial perturbation. Such an increase of the energy transfers in the background of internal 
wave fields has been described by Orlanski & Cerasoli (1980). 

FIGURE 16. (a) Energy decay observed for different amplitudes of the initial wave, mode (1, 1). 
( b )  Lifetime of the wave versus the square of the maximum slope h = kX2a/w of the primary wave 
iso-density lines; the linear fits are indicated, for an initial excitation in stream function (3.1) (dotted 
line), and for an initial excitation made of the linear wave density (3.2), with cot = n/2,  plus the 
associated first-order density perturbation, given in (8) (solid line). 
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analysis has been done only in the limiting case of small primary wave amplitude (Fr  
much smaller than l), which already provides a good approach to the more general 
case. Instability occurs through resonant triads given by diagrams like figure 10, 
further restricted by the condition of wave vector quantization. Instability occurs 
either through isolated triads, or along asymptotic branches of high wave vectors, for 
which the constraint of quantization is no more effective. For primary waves of fairly 
high frequencies (for instance k = (5 , l )  and k = (1, l)), such asymptotic branches have 
the highest growth rate, so that many modes, with the same frequency equal to half 
the primary wave frequency, but very different wavelengths, can grow on equal bases 
according to linear stability analysis (this is true only when viscosity is sufficiently 
small so that the asymptotic branches are really reached before significant reduction 
of growth rate occurs by viscous damping). Therefore the selection of the unstable 
structure must occur through nonlinear effects. Generally such problems of mode 
selection through nonlinear effects occur with modes of similar scale: for instance 
in the control of instability patterns in the plane (like rolls, squares or hexagons). 
We are not aware of any study of this problem of nonlinear mode selection in the 
presence of a hierarchy of mode scales. The result of the numerical computations is 
that these modes organize in a coherent way to form remarkable band structures, as 
shown in figure 4. Such structure can be described as a plane wave packet, but its 
decomposition in terms of standing waves, which fit with the boundary conditions, 
involve many modes. The organization of all these growing modes into such a 
structure is probably related to the fact that nonlinear effects vanish in a plane wave: 
such a perturbation is allowed to grow without limitation, until it becomes strongly 
unstable. The wavelength of this secondary wave packet is roughly proportional to 
the primary wave amplitude. We propose a mechanism of selection of this wavelength 
involving local amplification of the wave packet by parametric instability, as described 
by McEwan & Robinson (1975), and a loss of energy by radiation away from the 
packet. The latter mechanism depends on the wavelength while the former does not. 

For specific values of the primary wave frequency, instability can also grow through 
isolated resonant triad interactions. This is the case for the initial mode (1,l) which 
feeds the secondary modes (2,6) and (3,7). This perturbation grows by superposition 
with the band structure corresponding to the asymptotic branch. Each of these two 
perturbations oscillates with its own frequency, with nearly the same growth rate, and 
they significantly interact only as breaking is approached. As they grow in amplitude, 
such isolated triads can transfer energy to new triads as a secondary instability, and 
such a ‘cascade’ transfers energy to smaller and smaller scales, leading to steeper 
and steeper waves, until strongly nonlinear effects produce wave breaking. Such a 
scenario has been often conjectured, for instance in McEwan (1983). However in our 
calculations, the formation of the wave packet clearly dominates the vorticity fields, 
and therefore leads first to the conditions of strong nonlinearity. This wave packet 
corresponds to the ‘traumata’ described in laboratory experiments, and visualized in 
figure 6(a). The discussion of the role of these ‘traumata’ with respect to isolated 
triad interactions was often confusing in previous reports of laboratory experiments. 
Our numerical computations clearly show that the formation of these perturbations 
is the leading phenomenon in the initiation of wave breaking. 

Notice however that this organized wave packet appears only when the asymptotic 
branch of parametric instability has the maximum growth rate (figure 11). This is 
true for a primary wave of fairly high frequency, but not for a low-frequency wave 
like the mode (1,5). Then isolated triads have a maximum growth rate (branch C in 
figure 10). Also secondary modes at higher frequency than the primary wave can be 
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resonantly excited (although not in the limit of small primary wave amplitude), and 
seem to dominate the approach of wave breaking in a typical run like in figure 9. 
These cases of low-frequency waves clearly need further investigations. 

Finally the life time of the standing wave follows a remarkable law in Fr-2, for a 
given initial wave structure (figure 16). The life time is defined as the time after which 
the energy decay is maximum, providing an evaluation of the instant of breaking. 
This law can be reconciled with the growth rate in Fr, by considering the amplitude 
of the initial perturbation, together with the scaling law in Fr-' for the perturbation 
wavenumber q.  As expected from this argument, the life time depends on the presence 
of small perturbations, but not to a very large extent. Therefore our calculations of 
the life time should give quite realistic values even in a real standing wave subjected 
to perturbations. 

The possibility of applying these results to the breaking in more general internal 
wave fields deserves further investigations. The presence of a periodic primary wave, 
rather than a more complex wave field, is probably essential to feed the secondary 
wave packet by parametric instability. Propagating waves in an infinite domain, or 
in a horizontal channel (with vertical confinement) could probably display similar 
properties. Since periodic internal waves are produced by the interaction of oceanic 
currents with bottom topography, such a formation of bands may lead to observable 
features in the density field and positions of mixing events. Applications to other 
waves with similar dispersive properties, in particular inertial waves of rotating fluids, 
should also be considered. 
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